Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island.
نویسندگان
چکیده
Upon entry into the host, Salmonella enterica strains are presumed to encounter an iron-restricted environment. Consequently, these bacteria have evolved a variety of often-redundant high-affinity acquisition systems to obtain iron in this restricted environment. We have identified an iron transport system that is encoded within the centisome 63 pathogenicity island of Salmonella typhimurium. The nucleotide composition of this locus is significantly different from that of the rest of this pathogenicity island, suggesting a different ancestry and a mosaic structure for this region of the S. typhimurium chromosome. This locus, designated sit, consists of four open reading frames which encode polypeptides with extensive homology to the yfe ABC iron transport system of Yersinia pestis, as well as other ABC transporters. The sitA gene encodes a putative periplasmic binding protein, sitB encodes an ATP-binding protein, and sitC and sitD encode two putative permeases (integral membrane proteins). This operon is capable of complementing the growth defect of the enterobactin-deficient Escherichia coli strain SAB11 in iron-restricted minimal medium. Transcription of the sit operon is repressed under iron-rich growth conditions in a fur-dependent manner. Introduction of a sitBCD deletion into wild-type S. typhimurium resulted in no apparent growth defect in either nutrient-rich or minimal medium and no measurable virulence phenotype. These results further support the existence of redundant iron uptake systems in S. enterica.
منابع مشابه
Characterization of SprA, an AraC-like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1.
Pathogenicity island 1 (SPI-1) located at centisome 63 of the Salmonella chromosome encodes a type III protein secretion system that is essential for its pathogenicity. The translocation of effector proteins through this system results in the stimulation of signalling events, leading to actin cytoskeletal rearrangements and nuclear responses. These cellular responses ultimately lead to bacteria...
متن کاملCharacterization of the mutS-proximal region of the Salmonella typhimurium SPI-1 identifies a group of pathogenicity island-associated genes.
The virulence properties of Salmonella enterica are largely encoded within a set of horizontally acquired gene blocks termed pathogenicity islands. One such pathogenicity island, SPI-1, located at centisome 63 of the Salmonella chromosome between the mutS and fhlA genes, encodes a type III protein secretion system and an iron uptake system. We have characterized the mutS-proximal border of this...
متن کاملA substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage.
Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secre...
متن کاملDifferential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA.
Salmonella enterica encodes a type III protein secretion system within a pathogenicity island (SPI-1) that is located at centisome 63 of its chromosome. This system is required for the ability of these bacteria to stimulate cellular responses that are essential for their pathogenicity. Expression of components and substrates of this system is subject to complex regulatory mechanisms. These mech...
متن کاملSalmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells.
Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 67 4 شماره
صفحات -
تاریخ انتشار 1999